
Influence of Blood Rheology and Outflow
Boundary Conditions in Numerical Simulations
of Cerebral Aneurysms

Susana Ramalho, Alexandra B. Moura, Alberto M. Gambaruto,
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1 Introduction

Disease in human physiology is often related to cardiovascular mechanics.
Impressively, strokes are one of the leading causes of death in developed countries,
and they might occur as a result of an aneurysm rupture, which is a sudden event in
the majority of cases. On the basis of several autopsy and angiography series, it is
estimated that 0.4–6 % of the general population harbors one or more intracranial
aneurysms, and on average the incidence of an aneurysmal rupture is of 10 per
100,000 population per year, with tendency to increase in patients with multiple
aneurysms [14, 20].

An aneurysm is a localized pathological dilation of the wall of a blood vessel,
due to the congenital or acquired structural weakening of the wall media, and
potentially results in severe complications, or even sudden death, through press-
ing on adjacent structures, or rupturing causing massive hemorrhage [10]. They
are primarily located in different segments of the aorta and in the intracranial
arteries supplying the brain. Moreover, intracranial aneurysms are most likely to
be encountered on or close to the circle of Willis, particularly in apices of the
bifurcation of first- and second-order arteries, and in curved arterial segments [28].
The natural history of this pathology is far from being fully understood, which can
be related to the paucity of temporal investigations, since aneurysms are rarely
detected before rupture. It is believed that the formation, growth, and rupture of
intracranial aneurysms are associated with local hemodynamics, other than lumen
structural mechanics and biomedical responses.

S. Ramalho • A.B. Moura • A.M. Gambaruto • A. Sequeira (�)
Department of Mathematics and CEMAT, Instituto Superior Técnico, Technical University
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Blood is a concentrated suspension of formed cellular elements that includes red
blood cells (RBC or erythrocytes), white blood cells (or leukocytes), and platelets
(or thrombocytes), suspended in an aqueous polymer solution, the plasma. RBC
have been shown to exert the most significant influence on the mechanical properties
of blood, mainly due to their high concentration (hematocrit Ht ≈ 40–45%).
Consequently, the rheology of blood is largely affected by the behavior of the RBC,
which can range from 3D microstructures to dispersed individual cells, depending
predominantly on the shear rates [24]. Hemodynamics is not only related to the fluid
properties but also to other mechanical factors, including the forces exerted on the
fluid, the fluid motion, and the vessel geometry.

According to the circulatory region of interest and the desired level of accuracy,
blood flow may be modeled as steady or pulsatile, Newtonian or non-Newtonian,
and laminar or turbulent. In medium to large vessels, blood flow has pulsatile behav-
ior, due to the repeated, rhythmic mechanical pumping of the heart [15]. However,
in small arteries sufficiently distant from the heart the flow is predominantly steady.
In this work, the importance of including the pulsatility of blood is studied, and both
steady and unsteady simulations are considered.

As mentioned above, the RBC play an important role in the blood rheol-
ogy. While plasma exhibits a nearly Newtonian behavior, whole blood has non-
Newtonian characteristics [22]. This is mainly due to the RBC’s tendency to form
3D microstructures at low shear rates and to their deformability and alignment with
the flow field at high shear rates. Experimental studies suggest that in most part of
the arterial system the viscosity of blood can be considered as a constant, and blood
can be modeled as a Newtonian fluid. However, the complex processes related to
the formation and breakup of the 3D microstructures, as well as the elongation
and recovery of individual RBC, contribute in particular to blood shear-thinning
viscosity, corresponding to a decrease in the apparent viscosity with increasing
shear rate. It has also been observed that blood can present viscoelastic behavior
[1, 22]. The variability of the blood viscosity leads to differences in perceived shear
stress along the arterial wall. Indeed, in large arteries the instantaneous shear rate
over a cardiac cycle has drastic variations, up to two orders of magnitude [25].
Despite these findings, as referred, it is often reasonable to simulate blood flow as
a Newtonian fluid, since in sufficiently large nonpathological arteries it experiences
high shear rates, over 100 s−1. Many authors adopt this argument however this
assumption is not valid when the shear rate is lower than 100 s−1, which is the case
of small arteries, veins, capillaries, and aneurysms or in recirculation regions down-
stream of a stenosis [27]. In these cases the flow is slower and the non-Newtonian
models are better suited. Nevertheless, hemodynamics in intracranial aneurysms has
been argued to be accurately modeled using the Newtonian assumption [4]. Here,
both Newtonian and non-Newtonian fluid mathematical models will be adopted and
compared.

Variations in the mathematical modeling of blood rheology lead to modeling
uncertainties, which might compromise the reproducibility of the clinical data. The
present work also focuses on the uncertainties that arise from considering different
boundary conditions at the outflow sections of the computational domain, as well
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as from the inclusion or exclusion of the main side-branches in the geometry. The
geometries employed in this work consist of a patient-specific aneurysm, obtained
from medical imaging, and an idealization, for comparison purposes.

The outline of this chapter is as follows. Section 2 is dedicated to the geometry
reconstruction of the patient-specific medical image data. The idealization of the
anatomically realistic geometry will be also discussed. Section 3 is devoted to
the detailed description of the mathematical models. It includes the description of
the three-dimensional (3D) fluid model, as well as the reduced one-dimensional
(1D), and zero-dimensional (0D) models. The couplings of the reduced models
with the 3D one, that serve here as proper outflow boundary conditions, are also
discussed. The numerical methods, geometry specifications, and inflow boundary
conditions are introduced in Sect. 4. In Sect. 5 the numerical results are presented
and discussed. Finally, in Sect. 6 conclusions are drawn.

2 Geometries Definition

The numerical simulations of hemodynamics are performed on both idealized ge-
ometries and an anatomically realistic geometry of a patient-specific aneurysm. The
patient-specific geometry is reconstructed from medical images obtained in vivo
from rotational computerized tomography angiography (CTA), with resulting voxel
resolution of 0.4 mm on a 5123 grid. This volumetric data is segmented using a
constant threshold value. The surface triangulation of the vessel wall is extracted
using a marching tetrahedra algorithm and hence a linear interpolation. This
approach is computationally inexpensive but assumes that the image intensity of the
desired object is sufficiently different from the background to permit a constant gray
scale threshold choice. It furthermore requires that the medical image resolution
is fine enough and isotropic to perform marching tetrahedra directly, instead of
performing an interpolation as presented in [8] and references therein.

Several other segmentation methods exist for image data of cerebral aneurysms,
such as deformable models and region growing [2, 4, 23]; however these tend to
be sensitive to user defined parameter settings. Each segmentation approach will
yield a different geometry definition that depends on user-defined coefficients or
assumptions made in the approach [26]. Ultimately there is an inherent uncertainty
in the model definition limited by the acquisition modality, resolution, contrast, and
noise.

The resulting virtual model of the vasculature is then prepared for the numerical
simulations by identifying the regions of interest and removing secondary branches.
Successively surface smoothing is performed due to medical imaging noise and
limited resolution, taking care not to alter the object beyond the pixel size, since
this represents the inherent uncertainty size. Smoothing is performed using the
bi-Laplacian method, with a final inflation along the local normal by a constant
distance in order to minimize the volume alteration and surface distortion [8].
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Fig. 1 Cerebral arterial system showing a saccular aneurysm located on the outer bend of the
posterior inferior cerebral artery (PICA) in (a) coronal view, (b) sagittal view with superposition
of the region of interest,and (c) detail of the region of interest in coronal view

Fig. 2 The geometries considered, including the chosen cross-sections: (a) region of interest of
the anatomically realistic geometry with side-branches excluded; (b) idealized geometry with side-
branch in the aneurysm; (c) idealized geometry with hole (clipped side-branch) in the aneurysm

The anatomically realistic geometry of the aneurysm and the identification of the
region of interest for the computational domain are depicted in Fig. 1. The idealized
geometry considered is inspired from [11]. It has a reduced surface definition
complexity, introducing however a side-branch in the aneurysm. The aim is to
provide a clearer understanding of the sensitivity to the choice of fluid boundary
conditions in a similar flow field to that of the anatomically realistic geometry.
Nonetheless, the idealization reduces the presence of complex flow structures that
arise in the patient-specific case, due to the non-planarity of the main vessel and
the small-scale detail in the surface definition. The idealized geometry consists of
a main vessel with constant diameter and radius of curvature, a spherical saccular
aneurysm, and a side-branch that is represented by either a straight tube or a hole,
resulting in a total of two idealized geometries. Figure 2 shows the geometries
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studied: anatomically realistic, idealized with tube side-branch, and idealized with
hole side-branch. For abbreviation these geometries will be referred to as “real,”
“idealized with branch,” and “idealized with hole,” respectively.

3 The Mathematical Models

Hemodynamics in the cardiovascular system is modeled through the time-dependent
equations for incompressible fluids, derived from the conservation of momentum
and mass. They describe a homogeneous fluid in terms of the velocity and the
pressure fields. Considering an open and bounded domain Ω ⊂ R

3, the system of
equations representing such fluid is given by

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂ t

+(u ·∇)u− 1
ρ

div σσσ(p,u) = f,

in Ω,∀t > 0,
div u = 0,

(1)

where f represents the body forces (that will be neglected, f= 0, for the case study at
hand), ρ is the fluid constant density, and the Cauchy stress tensor σσσ(p,u) depends
on the unknown fluid pressure, p, and velocity, u, and may be generally represented
as the sum of the so-called spherical, pI, and deviatoric, τττ(D(u)), parts [21]

σσσ(p,u) =−pI+ τττ(D(u)). (2)

In the spherical part, p is the Lagrange multiplier associated to the incompress-
ibility constraint div(u), which defines the mechanical pressure for incompressible
fluids, p = p(x, t), and I is the unitary tensor. Concerning the deviatoric tensor, τττ , it
depends on the strain rate tensor, D(u), which is the symmetric part of the velocity
gradient

D(u) =
1
2

(
∇u+(∇u)T)

.

3.1 Newtonian Fluids

The definition of a constitutive relation for τττ(D(u)) is related to the rheological
properties of the fluid. Under the assumption of incompressible Newtonian fluids,
the Cauchy stress tensor is a linear isotropic function of the components of the
velocity gradient, and it is given by

σσσ(u, p) =−pI+ 2μD(u), (3)

where μ > 0 is the fluid constant Newtonian viscosity and τττ(u) = 2μD(u).
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Thus, applying the constitutive relation (3) to Eq. (1), the Navier–Stokes
equations for incompressible Newtonian fluids are obtained:

⎧
⎪⎪⎨

⎪⎪⎩

ρ
∂u
∂ t

+ρ (u ·∇)u+∇p− div(2μD(u)) = 0,

in Ω,∀t > 0,
div u = 0.

(4)

3.2 Generalized Newtonian Fluids

The most general form of Eq. (2), for isotropic symmetric tensor functions, under
frame invariance requirements [21], is given by

σσσ = φ0I+φ1D+φ2D2, (5)

with φ0,φ1, and φ2 dependent on the density ρ and on the three principal invariants
of D, ID = tr(D), IID = 1

2

(
(tr(D))2− tr(D2)

)
, and IIID = det(D), where tr(D) and

det(D) denote the trace and the determinant of tensor D, respectively. By setting
φ2 = 0, and φ1 constant, we obtain the relation for a Newtonian fluid, governed by
the Navier-Stokes equations (4). Considering φ2 
= 0 does not correspond to any
existent fluid under simple shear, so that the constitutive relation (5) is often used in
the reduced general form, with φ2 = 0 [21]: σσσ = φ0I+ φ1D. Moreover, respecting
the frame invariance requirements and the behavior of real fluids, φ1 becomes the
viscosity function [21], and the following general constitutive relation is obtained:

σσσ =−pI+ 2μ(IID,IIID)D, (6)

where the viscosity function μ might depend on the second and third invariants of D.
Since IIID = 0 in simple shear, as well as in other viscometric flows, it is

reasonable to neglect the dependence of μ on IIID. Furthermore, IID is negative
for isochoric motions, where tr(D) = 0, so the positive metrics of the rate of
deformation

γ̇ ≡
√
−4IID =

√
2tr(D2),

also known as the shear rate, may be defined. Using the definition of the shear rate
as a function of the second invariant of D, relation (6) can be rewritten as follows:

σσσ =−pI+ 2μ(γ̇)D. (7)

This equation defines the constitutive equation for the generalized Newtonian fluids,
such that the equations of motion for these fluids are of the form



Numerical Simulations of Cerebral Aneurysms 155

Table 1 Some generalized Newtonian models for blood viscosity and correspond-
ing constants

Model Viscosity model Model constants for blood

Carreau F(γ̇) = (1+(λ γ̇)2)(n−1)/2 μ0 = 0.456,μ∞ = 0.032
λ = 10.03s,n = 0.344

Cross F(γ̇) = (1+(λ γ̇)m)−1 μ0 = 0.618,μ∞ = 0.034
λ = 7.683s,m = 0.810

Yeleswarapu F(γ̇) =
1+ log(1+λ γ̇)

1+λ γ̇
μ0 = 1.10,μ∞ = 0.035
λ = 45.23s

Oldroyd μ(γ̇) = μ0
1+(λ1 γ̇)2

1+(λ2 γ̇)2
μ0 = 0.426,μ∞ = μ0λ 2

1 λ
−2
2

λ1 = 1.09s,λ2 = 3.349s

⎧
⎪⎪⎨

⎪⎪⎩

ρ
∂u
∂ t

+ρ (u ·∇)u+∇p− div(2μ(γ̇)D(u)) = 0,

in Ω,∀t > 0,
div u = 0.

(8)

A variety of non-Newtonian viscosity functions μ(γ̇) can be used, only differing
on the functional dependence of the viscosity μ on the shear rate γ̇ . To model blood
flow, the focus is put on bounded viscosity functions of the form

μ(γ̇) = μ∞+(μ0− μ∞)F(γ̇), (9)

where the constants μ0 and μ∞ are the asymptotic viscosities at zero, μ0 =
limγ̇→0 μ(γ̇), and infinity, μ∞ = limγ̇→∞ μ(γ̇), shear rate. F(γ̇) is a continuous and
monotonic function such that

lim
γ̇→0

F(γ̇) = 0, lim
γ̇→∞

F(γ̇) = 1. (10)

The definition of function F(γ̇) characterizes the generalized Newtonian model.
Table 1 was taken from [9] and shows several possible viscosity functions.

The values of the parameters there displayed, corresponding to an hematocrit
Ht = 40% and temperature T = 37 ◦C, were obtained from in vitro blood experimen-
tal data, as described in [9]. To set the parameters values, a nonlinear least squares
fitting was applied [9, 13]. Notice that, with such parameters, all the viscosity
functions in Table 1 correspond to shear-thinning models.

Other generalized Newtonian models for blood viscosity, like the power-law
and the Carreau–Yasuda model, have been frequently used to describe blood flow
(for further details on these models, see [22]). In this work, following [9, 13], the
Carreau viscosity function is used, with the parameters provided in Table 1.



156 S. Ramalho et al.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
10–3 10–2 10–1 100 101 102 103

Shear rate(S–1)

V
is

co
si

ty
 (

P
oi

)

Carreau model
Cross model
Oldroyd
Experimental data

Fig. 3 Apparent viscosity as a function of shear rate for whole blood at Ht = 40%, T = 37◦C,
taken from [9]

Plots of some non-Newtonian models and the experimental data are shown in
Fig. 3. Experimental data for low shear rates is difficult to obtain, resulting in very
different behavior as the shear rate approaches zero.

3.3 Outflow Boundary Conditions

Equations (4) or (6) have to be provided with initial and boundary conditions, in
order to be mathematically well defined and prepared to be solved by numerical
methods. The prescription of proper initial and boundary conditions is a crucial step
in the numerical procedure to obtain accurate and meaningful computed solutions.

After defining the initial condition, u = u0, for t = 0 in Ω, an appropriate set
of conditions must be imposed on the boundary of the domain Ω. In particular, for
the problem of blood flow in arteries, the computational domain is bounded by a
physical boundary that is the arterial wall, and by artificial boundaries on the fluid
domain due to truncation of the artery, detailed in Fig. 2.

On the physical boundary corresponding to the vascular wall a no-slip condition
is imposed, describing the complete adherence of the fluid to the wall. In this study,
the compliance of the artery wall will be neglected, that is, a fixed geometry is
considered, so that the velocity at the wall is zero. Thus, an homogeneous Dirichlet
boundary condition, u = 0, ∀t > 0, is imposed at the physical wall of the fluid.

The boundary conditions at the artificial sections cannot be obtained from
physical arguments and can be a significant source of numerical inaccuracies in
resolving the problem [3]. At these interfaces the remaining parts of the arterial
system need to be accounted for and modeled. Typically, it is very difficult to obtain
appropriate patient data for the flow boundary conditions.
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In this work a traction free boundary condition σ(u, p) · n = 0 will always
be considered at the main vessel outflow (see Fig. 2b). Concerning the outflow
section of the side-branch, four types of outflow boundary conditions are explored:
zero velocity, u = 0, meaning that the side-branch is neglected and modeled as a
no-slip wall [19]; zero normal stress, σ(u, p) ·n = 0 [4]; coupling with a 0D model
corresponding to a simple resistance [13]; and coupling with a one-dimensional
(1D) model equivalent to the three-dimensional (3D) side-branch [6]. Thus, the first
two approaches neglect the effects of the remaining parts of the cardiovascular
system, as opposed to the last two which resort to the Geometrical Multiscale
Approach [6] to account for the global circulation on the localized numerical
simulation.

3.4 The 1D Model

The 1D simplified model is formulated assuming that an artery is a cylindrical
compliant tube, with axial symmetry and fixed cylinder axis. The velocity com-
ponents orthogonal to the vessel axis are neglected and the wall displacements are
only accounted for in the radial direction. Moreover, no body forces are considered
and the pressure, P(t,z), is assumed constant on each axial section, varying only
coaxially. The area of each cross-section S is given by A(t,z) =

∫
S dσ , and the mean

velocity is defined as ū = A−1 ∫
S uzdσ , where uz is the axial velocity. The area, A,

the averaged pressure, P, and the mean flux, Q = Aū, are the unknown variables to
be determined. The average pressure and flow rate are related to the 3D pressure
and velocity, respectively, while the area is related to the 3D wall displacement.
Thus, the 1D model provides a fluid–structure interaction (FSI) description of blood
flow in arteries, accounting for the wall compliance due to the blood load. For that
reason, the 1D model captures very well the wave propagation nature of blood flow
in arteries.

Integrating the Navier–Stokes equations on a generic cross-section S of the
cylindrical vessel, and after the above mentioned simplifications, explored in [6],
the reduced 1D form of the continuity and momentum equations for the flow of
blood in arteries is given, for all t > 0, by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂A
∂ t

+
∂Q
∂ z

= 0,

z ∈ (a,b),
∂Q
∂ t

+α
∂
∂ z

(
Q2

A

)
+

A
ρ
∂P
∂ z

+Kr

(
Q
A

)
= 0,

(11)

where z is the axial direction, L = b− a denotes the vessel length, Kr is the friction
parameter, α is the momentum flux correction coefficient, also known as Coriolis
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coefficient, defined by α =
∫

S u2
z dσ

Aū2 , and ρ is the fluid mass density. For a parabolic
profile, the friction parameter is defined as Kr = 8πμ [6], which is the value
generally used in practice. The Coriolis coefficient is set toα = 1, corresponding to a
flat profile [6], in order to simplify the analysis. The density ρ and the fluid dynamic
viscosity μ are considered constant. Hence, the 1D model does not account for the
non-Newtonian behavior of blood.

The previous system of two equations for the three unknown variables A, Q, and
P needs to be closed. In order to do that, a structural model for the vessel wall
movements, relating pressure and area, must be given. Here, the simplest pressure-
area algebraic relation [6, 7] is used

P(t,z)−Pext = β
√

A−√A0

A0
, (12)

where A0 is the initial area and β is a single parameter that describes the mechanical
and physical properties of the vessel wall

β =

√
πhE

1− ξ 2 , (13)

where h the wall thickness, E the vessel wall Young, or elasticity, modulus, and
ξ the vessel wall Poisson ratio. β is constant along z only when E , h, or A0 are
constant, since they may be functions of z. In this work, the wall parameters are
assumed constant along z, and the external pressure is neglected: Pext = 0.

Numerical Discretization of the 1D Model

The 1D model is numerically discretized in time and space by means of a second-
order Taylor-Galerkin scheme [6]. It consists in using the Lax-Wendroff scheme to
discretize in time and the finite element method to obtain the space approximation.
This discretization can be considered as a finite element counterpart of the Lax-
Wendroff scheme, which has a very good dispersion error characteristic and can be
easily implemented [6].

A uniform mesh is used, meaning that the elements size is constant and equal to h.
Moreover, linear (P1) finite elements are considered. The Lax–Wendroff scheme is
obtained using a Taylor series of the solution U = [Q A]T truncated to the second
order, resulting in an explicit scheme. Being an explicit time advancing method, the
Lax–Wendroff scheme requires the verification of a condition bounding the time
step [6]

Δ t ≤
√

3
3

h
max(c+ |ū|) , (14)
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where h is the size of the spatial mesh and c = c(A;A0;β ) =
√

β
2ρA0

A
1
4 is the speed

of the wave propagation along the vessel. Condition (14) corresponds to a CFL
number of

√
3

3 .
The final finite element solution for the area and flow rate is obtained by finding,

at each time step tn+1, Un+1
h (z) = ∑N+1

i=0 Un+1
i ψi(z) ∈ Vh(a,b), where Vh(a,b) is the

space of P1 finite elements in 1D for the uniform mesh associated to h spacing, and
{ψi}N

i=1 its basis, satisfying the following expression for the interior nodes:

(Un+1
h ,ψ j) = (Un

h,ψ j)+Δ t

(
Fn− Δ t

2
HnBn,

∂ψ j

∂ z

)
−Δ t

(
Bn− Δ t

2
Bn

UBn,ψ j

)

−Δ t2

2

(
Hn ∂Fn

∂ z
,
∂ψ j

∂ z

)
+
Δ t2

2

(
Bn

U
∂Fn

∂ z
,ψ j

)
, j = 1, · · · ,N,n = 0, · · · ,M− 1.

(15)

Here U0
h is a suitable approximation of the initial data, (u,v) :=

∫ b
a u ·vdz represents

the inner product in Vh(a,b),
{
ψ j

}N
j=1 are the basis functions of Vh(a,b), Δ t =

tn+1− tn, and

H =

[
0 1

−α Q2

A2 +
β

2ρA0
A

1
2 2α Q

A

]

, BU =

[
0 0

Kr
Q
A2 −Kr

1
A

]

,

F =

[
Q

α Q2

A + β
3ρA0

A
3
2

]

, B =

[
0

−Kr
Q
A

]
.

System (15) must be supplemented with proper initial, U0
h, and boundary

conditions for the solution Un+1
h , at the left and right boundary points, z = a and

z = b, respectively. In the present work, the initial conditions were taken to be
A0(z) = A0 and Q0(z) = 0.

Compatibility Conditions for the 1D Model

By choosing relation (12), the pressure may be eliminated from the momentum
equation, and system (11) becomes hyperbolic, with two distinct eigenvalues (see
[6, 17] for the characteristic analysis of system (11))

λ1,2 = ū± c, (16)

where c is the speed of the propagation of waves along the artery, defined above. The
eigenfunctions, or characteristic variables, corresponding to the eigenvalues λ1,2, are
defined by
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W2 W1

L0

Fig. 4 The characteristic
lines

W1,2 = ū±
∫ A

A0

c(τ)
τ

dτ = ū± 4

√
β

2ρA0

(
A

1
4 −A

1
4
0

)
. (17)

Under physiological conditions, typical values of the flow velocity and mechan-
ical characteristics of the vessel wall are such that c � ū, and consequently we
have that λ1 > 0 and λ2 < 0, everywhere. This means that the flow is subcritical,
such that the characteristic variable W1 associated to the first eigenvalue, λ1, travels
forward, while the characteristic variable W2, associated to the second eigenvalue,
λ2, travels backward (see Fig. 4). Hence, W1 is the incoming characteristic, and W2

is the outgoing characteristic, at the upstream left point (z = a), and vice versa at the
downstream right point (z = b), as illustrated in Fig. 4.

Because of this, exactly one boundary condition must be imposed at each
extremity of the vessel [18]. However, the discretized model requires two conditions
at each boundary node in order to solve the system, corresponding to Qn+1

h and An+1
h ,

both at z = a and z= b. Thus two additional conditions, which have to be compatible
with the problem, are needed at the numerical level. These compatibility conditions
can be obtained by means of the outgoing characteristic at each boundary [18],
through projecting the equations along the characteristic lines exiting the domain
[16]. This results in computing the following additional relations at the boundaries:

W2(Q
n+1
h (a),An+1

h (a)) =W2(Q
n
h(za),A

n
h(za))−Δ tKr

Qn
h(za)

(An
h(za))2 , at z = a, (18)

and

W1(Q
n+1
h (b),An+1

h (b)) =W1(Q
n
h(zb),A

n
h(zb))−Δ tKr

Qn
h(zb)

(An
h(zb))2 , at z = b, (19)

where za and zb are the corresponding foot of the outgoing characteristic lines
which, using a first-order approximation [6], are given by

za = a−Δ tλ2(Q
n
h(a),A

n
h(a)) = a−Δ t

(
Qn

h(a)

An
h(a)

+

√
β

2ρA0
(An

h(a))
1
4

)

, (20)

zb = b−Δ tλ1(Q
n
h(b),A

n
h(b)) = b−Δ t

(
Qn

h(b)

An
h(b)

−
√

β
2ρA0

(An
h(b))

1
4

)

. (21)
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The solution for the boundary nodes of the domain may then be achieved through
resolving a 2×2 nonlinear system given by Eqs. (18) and (19) (for more details see
[17]).

Typically, the inflow condition is a flux or a total pressure, while the outflow
condition is given by W2 = 0, such that there is no incoming characteristic at z = b,
corresponding to a completely absorbing boundary condition at the outflow point.

3D–1D Coupling

To couple the artificial boundary, denoted Γart from here on, of the 3D fluid Eq. (1)
with the 1D interface point z = a of the hyperbolic model (11), the continuity of the
flow rate and the mean pressure are imposed, for all t > 0 (see for instance [7])

∫

Γart

u ···ndγ = Q1D(a, t), (22)

1
| Γart |

∫

Γart

pdγ = P1D(a, t). (23)

Here u and p denote the 3D velocity vector and pressure, respectively, and Q1D

and P1D are the 1D flow rate and mean pressure, respectively. The solution of the
coupled problem is approximated in an iterative way, by resorting to a splitting
strategy. This means that each model is solved separately and yields the resultant
information to the other. Thus, at each time step the 3D model returns pointwise
data, which is integrated to obtain the averaged quantities to be provided to the 1D
model as a boundary condition at z = a. On the other hand, the 1D model provides
the boundary conditions at the coupling sections of the 3D in terms of average data.
The average data is defective for the 3D problem, since it requires pointwise data
at the coupling interface. Thus, appropriate techniques must be used in order to
prescribe the 1D integrated data onto the 3D model as boundary condition. Precisely,
in this work the coupling is performed by passing the flow rate from the 3D to the
1D model, imposing Eq. (22) at the coupling point of the 1D model, z = a, and
by imposing the mean pressure, computed by the 1D model, to the 3D problem,
by means of the condition (23) at the 3D artificial coupling boundary, Γart. To
prescribe the defective mean pressure on the 3D coupling section, Γart, the approach
introduced in [12] is followed, so that the mean pressure is imposed through a
Neumann boundary condition

σ(u, p) ···n = P1Dn, on Γart, ∀t > 0. (24)

The 3D–1D iterative coupling algorithm is carried out explicitly in this work.
At each time step tn, the 3D model provides the flow rate computed at the previous
time step to the 1D model and receives the mean pressure computed from the 1D
model. This is followed by advancing to the next time step (see Fig. 5).
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Fig. 5 Scheme of the 3D–1D
explicit coupling

3.5 The 0D Model

Lumped parameters models are derived from the 1D ones by further averaging
spatially in the coaxial direction [6], thus losing dependence from the spatial
coordinates. Because of this, they are also called 0D models. They are represented
by a system of ordinary differential equations (ODEs) in time and are analogous
to electric circuits, where the flow rate can be identified with the current, the
mean pressure with the voltage, and the 3D physical parameters, such as blood
viscosity, blood inertia and wall compliance, with the lumped parameters resistance,
inductance, and capacitance, respectively [6]. The 0D models are able to represent
the circulation in large compartments of the cardiovascular system, such as the
venous bed, the pulmonary circulation, or the heart [6].

In the present study a simple 0D model is also used and coupled to the 3D model.
It consists of a single resistance, resulting in an algebraic relation between flux and
mean pressure, through the resistance parameter: P =RQ. This model is constructed
using the linear counterpart of the absorbing boundary condition for the 1D model
[13]. Precisely, given the expression (17) of W2, the condition W2 = 0 is equivalent to

f (P) =

√
8β
ρA0

(
P

A0

β
+

√
A0

)2
(√

P
A0

β
+

√
A0−A

1
4
0

)

= Q. (25)

A linearization of expression (25) is obtained resorting to the first approximation
around zero of f (P) : Q = f (P) = f (0) + f ′(0)P (see [13]). The pressure is then
given by

P =

√
ρβ√

2A5/4
0

Q. (26)
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3D–0D Coupling

The coupling of the 0D model (26) with the 3D fluid equations corresponds to
imposing the linear counterpart of the absorbing boundary condition for the 1D
model, W2 = 0, directly on the 3D artificial section. The coupling is achieved by
forcing the pressure given by the resistance of the 0D model at the 3D interface
section Γart, similarly to the 3D–1D coupling. An explicit coupling is applied,
meaning that the mean pressure at the current time step, Pn+1, is computed by means
of expression (26) using the flow rate on the artificial section at the previous time
step, Qn, and it is prescribed at the artificial section at the current time step. Thus,
as in [13], the defective averaged data condition

P(n+1) =

√
ρβ√

2A5/4
0

Q(n), on Γart, (27)

is prescribed by means of a Neumann boundary condition (24) on the 3D artificial
section.

4 Numerical Simulation Setup

In this work, the hemodynamics inside an intracranial saccular aneurysm is analyzed
in an anatomically realistic geometry, as well as in idealized geometries. The
idealized geometries serve as test cases with reduced complexity of the flow field,
allowing for a better understanding of the effects of changing the fluid models, the
boundary conditions, and in evaluating steady and unsteady simulations. Moreover,
the numerical simulations in the idealized geometries have lower computational
costs than in the realistic ones, allowing to conduct a comprehensive series of
tests. While clinical decisions should be based on numerical simulations using
anatomically realistic patient-specific geometries, idealized models provide insight
into the hemodynamics with respect to choices in modeling and numerical setup.

In both steady and unsteady cases, the fluid is initially at rest and then the inflow
flow rate is linearly increased with a parabolic profile to a final steady-state flux
Q = 2.67cm3 s−1, such that

Qramp
in (t) =

t Q
tramp

, for t < tramp, (28)

Qin = Q, for t > tramp, (29)

where tramp is the time length of the linear ramp, and it is set to tramp = 1 s in
all test cases. The reference value for the inflow condition, Q = 2.67 cm3 s−1, is
obtained through the relationship between flow rate and vessel areas, derived from
measurements in internal carotid and vertebral arteries [5].
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Fig. 6 Steady and unsteady inflow flux profiles versus time. The points indicate locations of “peak
systole,” “minimum diastole” and “mean diastole” used in the discussion section

In the case of pulsatile flow simulations for the idealized geometry, a periodic
wave inflow boundary condition is imposed, representing a realistic heart beat
waveform, in the carotid, with a mean flux equal to the steady-state flux value. The
steady and unsteady inflow flux profiles with respect to time are illustrated in Fig. 6.

Convergent steady-state and pulsatile solutions were identified by checking that
the difference between two consecutive time steps (steady case) or two consecutive
cycles (unsteady case) was negligible. In the case of the steady state solutions this
convergence is of the order of 10−7, while for the unsteady case all the results
presented correspond to the 12th cycle where the convergence is of the order of
10−6.

The steady-state simulations were carried out using a time step of 0.01 s, while
the pulsatile used a time step of 0.0075 s, corresponding to a hundredth of the heart
beating period. Moreover, a time step of 0.5× 10−4 s was taken when the coupling
with the 1D hyperbolic model is used as outflow boundary condition. For both 1D
and 0D models, the β parameters used were determined through expression β =√
πh0E

1−ξ 2 , where the thickness of the wall h0 was set to 10% of the vessel radius,

the Young modulus was set to E = 105, and the Poisson ratio was set to ξ = 0.5,
assuming the artery wall is incompressible.

A volumetric mesh of about 0.85 M tetrahedra was created for the anatomically
realistic geometry, corresponding to a graded mesh with element size of 0.016 cm
within the aneurysm, and maximum size of 0.04 cm in the upstream and downstream
sections. The idealized geometries are planar with the parent vessel radius of
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0.25 cm, the side-branch radius of 0.075 cm, and the aneurysm radius of 0.4 cm. The
side-branch length is 1.2 cm. The idealized geometry volumetric mesh is composed
of approximately 0.5 M tetrahedral elements, with elements of size 0.02 cm.

5 Discussion

5.1 Idealized Geometry

Hemodynamics inside the idealized aneurysm was studied using the Newtonian and
Carreau fluid models, both in steady and unsteady inflow regimes, including and
excluding a side-branch within the aneurysm, and prescribing four different types
of outflow boundary conditions on the side-branch: traction-free (TF), no-slip (NS),
3D–1D coupling (1D), and 3D–0D coupling (0D). At the outflow section of the
main vessel a traction-free boundary condition was always prescribed.

The differences between the Newtonian and Carreau solutions, for both steady
and unsteady regimes, are depicted in Fig. 7 (velocity) and Fig. 8 (WSS). The
geometry considered for these results is the idealized with hole (clipped side-
branch), and the traction-free condition at this outflow boundary. The maximum

Fig. 7 Velocity magnitude (cm/s) for the clipped geometry with traction-free conditions at
the side-branch outflow, using the Newtonian (top) and the Carreau (middle) models, and its
differences (bottom), for the unsteady and steady solutions. The maximum difference is calculated
for the cross-section, using the maximum value for the percentage



166 S. Ramalho et al.

Fig. 8 WSS magnitude (dyn/cm2) for the clipped geometry with traction-free conditions at the
side-branch, using the Newtonian (top) and the Carreau (middle) models, and its differences
(bottom), for the unsteady and steady solutions. The maximum difference is calculated for the
whole geometry, using the maximum value for the percentage

differences in the velocity cross-section between both models are of the order
of 5–8% and occur inside the aneurysm. The smallest differences occur on the
steady case or at the minimum of diastole, while the higher discrepancies are
observed during the systolic phase of the unsteady flow. The results show that,
even though the average of the difference is low, in some periods of the cardiac
cycle the discrepancies between the Newtonian and non-Newtonian models become
more noticeable. Comparing the two inflow conditions, the variations that appear
inside the aneurysm are higher in all the chosen time instants of the unsteady flow,
highlighting the importance of considering simulations as time dependent. The same
conclusions can be drawn from the WSS distribution, yet here the discrepancies are
more relevant in the main vessel.

In order to analyze the effects of the different outflow conditions, the configu-
ration with the side-branch and a traction-free boundary condition at its outflow is
compared with the clipped geometry using all the considered boundary conditions,
see Fig. 9 and Table 2. In this particular geometry the side-branch has a substantial
influence on the solution, not only due to its location, inside the aneurysm, but also
due to the large percentage of flow that enters the branch. The traction-free condition
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Fig. 9 Velocity magnitude (cm/s) for stead-state simulations of the geometry with side-branch and
traction-free boundary condition and the clipped geometry with different boundary conditions and
its differences. The maximum difference is calculated on the cross-section, using the maximum
value for the percentage. The values in the figure are the pressure drop with the inflow (red) and
flow rate (blue)

Table 2 WSS magnitude differences (dyn/cm2) for the geometry with side-
branch and traction-free boundary condition and the clipped geometry with
different boundary conditions
TF - TF TF - V0 TF - 0D TF - 1D
Max = 23.5 Max = 13.6 Max = 15.0 Max = 15.0
(81%) (46.8%) (51,7%) (51.7%)
Mean = 4.3e−4 Mean = 8.2e−4 Mean = 4.4e−4 Mean = 4.8e−4

The maximum difference is calculated on the whole geometry, using the
maximum value for the percentage

was chosen to be imposed at the end of the side-branch for comparison purposes,
here considering the fluid to be fully developed at the branch outflow. From the
velocity results of Fig. 9 it is possible to infer that the two reduced models are
good approximations of the side-branch, since the differences between imposing
these reduced models directly in the clipped configuration and accounting for the
side-branch are very small. The disparity between the pressure drops obtained
using the reduced 1D and 0D models and the side-branch, are related to the
pressure drop across the side-branch. In fact, the pressure drop across the side-
branch is 258 dyn/cm2, which is approximately that found for the reduced models.
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These pressure drops, together with the values of the flow rate at the side-branch
outflow, indicate that the reduced models provide appropriate outflow boundary
conditions, accounting for the side-branch. Prescribing a traction-free condition
on the hole section, or neglecting its existence by a u = 0 condition, results in
significant discrepancies by considering the branched geometry. Thus, these outflow
conditions seem to be worse assumptions than coupling with the reduced models.
The differences are more pronounced in the WSS map than in the velocity cross-
section, but the minimum difference values are still found when coupling with
the reduced models. It is important to notice that despite these larger values, they
are confined to the aneurysm at the location of the side-branch, and the average
differences are extremely low.

The sensitivity of the computed solution to the boundary condition imposed at the
side-branch outflow section is depicted in Figs. 10 and 11, where different outflow
conditions are imposed in the clipped geometry. The values of the differences are
high, both in the velocity magnitude and in the WSS, except when using the 1D and
0D boundary conditions. From these results it is possible to infer that in this case
the calculated resistance of the 0D model is consistent with the 1D model.

As before, the WSS differences are mainly localized close to the side-branch
base. In this region the values are very high, yet when considering the average in the
whole geometry, the values of the differences decrease abruptly. Thus, as expected,
the influence of the side-branch and its outflow boundary condition is particularly
important when the side-branch is located very close or within the aneurysm.

Figure 12 displays the differences that exist between the steady-state solution and
the time average of the unsteady solution, both for the velocity cross-section and the
WSS distribution, in the case of the hole geometry coupled with the 1D model. It is
possible to observe that the differences are very small, especially when considering
the average. At first sight this could indicate a great resemblance between the steady
and unsteady solutions. However, comparing the unsteady solutions of the clipped
geometry coupled with the 1D model and the branched geometry with traction-
free boundary condition, the differences are magnified at several instants of the
cardiac cycle (see Fig. 13). The comparison of these two cases reveals minimal
differences for the steady-state inflow conditions, as shown in Fig. 9. Nevertheless,
these differences are again significantly higher at different instants of the cardiac
cycle, as plotted in Fig. 13. Exhaustive conclusions cannot be drawn from steady-
state solutions, since even the average difference of the unsteady solutions of the
clipped geometry with the 1D boundary condition and the branched geometry with
the traction-free boundary condition is greater than the one for the steady-state.
This demonstrates, once again, the relevance of considering unsteady simulations,
especially when studying the influence of boundary conditions on the numerical
solutions.
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Fig. 10 Velocity magnitude (cm/s) for steady-state simulations of the clipped geometry using
different boundary conditions and its differences. The maximum difference is calculated for the
cross-section, using the maximum value for the percentage. The values in the figure are the pressure
gradient (up) and flow rate (down)

5.2 Anatomically Realistic Geometry

The anatomically realistic patient-specific geometry of a cerebral aneurysm (Figs. 1
and 2) was used to study the impact of changing the fluid rheological model.
The simulations in this case were performed under a steady inflow regime.
As expected also from the results in the idealized geometry, variations in the fluid
model influence the computational solution. In Fig. 14 the results for the velocity
magnitude, the WSS and WSSG (spatial WSS gradient) for both Newtonian and
Carreau solutions are shown, as well as their differences. The discrepancies between
the two models reach 11% in the velocity magnitude inside the aneurysm. The
WSS and WSSG differences are even more significant, 19% and 25%, respectively,
located at the neck of the aneurysm. These results indicate that the use of a constant
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Fig. 11 WSS magnitude (dyn/cm2) for steady-state simulations of the clipped geometry using
different boundary conditions and its differences. The maximum difference is calculated for the
whole geometry, using the maximum value for the percentage

viscosity results in overestimated values for the hemodynamic indicators under
analysis. Given the special physiological relevance and correlation of low WSS
to disease in arteries, the choice of a non-Newtonian model could yield different
clinical evaluations. The particle tracing depicted in Fig. 15, where the seeding
locations were maintained, shows that the flow structures inside the aneurysm are
similar for the Newtonian and non-Newtonian cases; however different locations of
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Fig. 12 Velocity (cm/s) and WSS (dyn/cm2) magnitude for the clipped geometry coupled with the
1D model with time averaged unsteady and steady flow regimes, and corresponding differences

jet impingement and size of the swirling motion are apparent. This indicates that
the differences due to the rheological model choice do not only affect the near-wall
region, but in cases of complex recirculating flow the free-stream field may also be
effectively altered.

6 Conclusions

Two types of geometries were considered: idealized configurations of a curved
vessel with an aneurysm, where a side-branch in the aneurysm was included as a
tube or a hole, and an anatomically realistic geometry of a cerebral aneurysm with
side-branches removed.

Regarding the idealized geometries, both steady and unsteady inflow regimes
were considered. Several boundary conditions were prescribed at the outflow
section of the side-branch in the aneurysm. Results indicate a large influence
of the outflow conditions on the entire domain, but more pronounced near the
side-branch base. The reduced 1D and 0D models seem to be fair approaches
to take into account the presence of the side-branches, providing appropriate
pressure drops. The importance of considering the side-branch increases when
located close or in the aneurysm, as it was the case of the idealized geometry.
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Fig. 13 Velocity magnitude (cm/s) for the geometry with side-branch and traction-free boundary
condition and the clipped geometry coupled with the 1D model and its differences, in unsteady
flow regime

These conclusions might not be straightforwardly extended to the anatomically
realistic geometries, since in such cases the side-branches are not straight tubes.
Work is ongoing in applying the approaches here presented to a significant
number of patient-specific geometries. The traction-free outflow condition on
the clipped geometry compared poorly to the solution of the tube side-branch
with a fully developed flow. The differences between steady and unsteady inflow
conditions are small and localized when the time averaged solution is compared.
However, at specific time instants of the cardiac cycle those differences are
much more significant, specially during systole. The Newtonian and Carreau
shear-thinning fluid models were used in both realistic and idealized geometries.
In both cases differences between the two rheological models are apparent, but less
emphatic than the influence of the boundary conditions. Also, the results of the WSS
and the WSSG show higher discrepancies between the two blood flow models. The
results here presented are preliminary in the sense that they should be complemented
with extensive studies in patient-specific geometries in order to obtain conclusions
in more general scenarios.
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Fig. 14 Results in the realistic geometry for the Newtonian (top) and Carreau (middle) solutions
and their differences (bottom). Velocity magnitude (cm/s) in the cross-section depicted in Fig. 2
(left), WSS (dyn/cm2) (middle), and WSSG (dyn/cm2) (right). The differences are given in the
cross-section for the velocity and over the entire surface for WSS and WSSG. The percentage is
calculated using values of the inflow section

Fig. 15 Particle trace of the Newtonian (left) and Carreau (right) solutions. Particles are selected
at the same location



174 S. Ramalho et al.

Acknowledgments We greatly acknowledge Prof. Jorge Campos and his team from the Faculty of
Medicine of the University of Lisbon, for providing us the in vivo rotational CTA scans of a specific
patient. This work has been partially funded by FCT (Fundação para a Ciência e a Tecnologia,
Portugal) through grants SFRH/BPD/34273/2006 and SFRH/BPD/44478/2008 and through the
project UT Austin/CA/0047/2008.

References

1. Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic fluid model for describing the flow
of blood. Int. J. Cardiovasc. Med. Sci. 4(2), 59–68 (2004)

2. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-
based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng.
Comput. 46(11), 1097–1112 (2008)

3. Balossino, R., Pennati, G., Migliavacca, F., Formaggia, L., Veneziani, A., Tuveri, M., Dubini,
G.: Influence of boundary conditions on fluid dynamics in models of the cardiovascular system:
A multiscale approach applied to the carotid bifurcation. Comput. Meth. Biomech. Biomed.
Eng. 12(1) (2009)

4. Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D., Frangi, A.F.: Effi-
cient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:
Technique and sensitivity. IEEE Trans.Med. Imag. 24(4), 457–467 (2005)

5. Cebral, J.R., Castro, M.A., Putman, C.M., Alperin, N.: Flow–area relationship in internal
carotid and vertebral arteries. Physiol. Meas. 29, 585 (2008)

6. Formaggia, L., Veneziani, A.: Reduced and multiscale models for the human cardiovascular
system. Lecture Notes VKI Lecture Series 7 (2003)

7. Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3D and 1D fluid-
structure interaction models for blood flow simulations. Math. Model. Numer. Anal. 41(4),
743–769 (2007)
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